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Mechanical systems possibly containing non-holonomic constraints are considered. The problem of stabilizing the motion of the 
system along a given manifold of its phase space is solved. A control law which does not involve the dynamical parameters of 
the system is constructed. The law is universal, that is, it stabilizes motion along any given manifold. It is only necessary that the 
manifold be feasible, that is, conform to the dynamics of the system. © 2000 Elsevier Science Ltd. All rights reserved. 

An equilibrium position of a non-holonomic system need not necessarily be isolated, and one is usually 
dealing with a manifold of equilibrium positions [1-4]. Stability conditions appropriate to this situation 
have been investigated, and various control problems relating to the stabilization of manifolds of 
equilibrium positions in non-holonomic systems have been considered [8, 9]. 

In this paper, we consider the stabilization of manifolds of general form, not necessarily corresponding 
to an equilibrium position of the system. A control law is constructed on the basis of Appell's equations 
for the motion of a non-holonomic system. It is obtained in the class of discontinuous feedbacks. The 
law does not explicitly involve the dynamical parameters of the mechanical system (the mass, moments 
of inertia, friction coefficients, etc.). This implies that the control law is universal [10-15], in the sense 
that it stabilizes not one but any given manifold of the system. The only necessary condition is that the 
manifold be feasible, that is, conform essentially to the dynamics of the controlled object (in particular, 
to the limited dynamical possibilities of its control devices). 

1. F O R M U L A T I O N  OF THE P R O B L E M  

Consider a controlled mechanical system of general form with m generalized coordinates, m controls 
and g non-holonomic constraints [1-4]. As an example of such a controlled system one can think of a 
mechanical system with rolling (a multisection controlled suspension of a pneumatic wheel) [4] or a 
system included in a machining process. It may be the complex multisection controlled fitting of a cutting 
tool, or a manipulator with a special machining device. It is assumed that the machining process may 
involve non-holonomic constraints. 

To describe the motion of a non-holonomic system of this type, one uses the following system of 
equations, due to Appell 

a u  / ai~ = r L (1.1) 

fsi(q, t ) q i + f s ( q ,  t ) - ~ , = 0  (1 .2)  
i=1 

f # (q ,  t)ili+ fp(q, t )=0  (1.3) 
i=1 

This system consists of n -I- m differential equations in m generalized coordinates qi and n(n = m - g )  
quasi-velocities of the system ~s [1-4]. Throughout this paper it is assumed that the indices s, r, q run 
through values 1, 2 , . . . ,  n; i , j ,  k - 1, 2 , . . . ,  m , p  - n  + 1, n + 2 . . . .  , m. 

Subsystem (1.1) comprises Appell's equations proper; subsystem (1.2) can be regarded as relations 
defining the quasi-velocities ~s of a system with generalized variables qi, ill, and (1.3) can be regarded 
as a description of non-holonomic mechanical constraints (this means that the system of differential 
constraints (1.3) is not reducible to any system of geometrical constraintsfp(q,  t) = 0 [1-4]). 
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The notation used in system (1.1)-(1.3) is the generally accepted standard one [1-4]. In addition, 
U = U(q, it, i~, t) denotes the acceleration function of the mechanical system and I-Is(q, it, t) are the 
generalized forces corresponding to quasi-coordinates ~, 

r l s  = ~,  (a i  + Mi)bis (1.4) 
i 

The quantities (ai  -I- Mi) in (1.4) are the generalized forces of the mechanical system corresponding 
to the generalized coordinates qi and Mi denotes the generalized control forces generated by the control 
devices of the system; these forces are assumed to be bounded 

[Mi[ <~ Hi, H i = const > 0 (1.5) 

Thus, the mechanical system under consideration has a control for each coordinate qi, as is typical, for 
example, in manipulator robots [10-15]. 

The quantities b~(q, t) in (1.4) are the coefficients of the matrix B = II b/k II, which satisfies the 
relations 

F B = E ,  rankF=m (1.6) 

whence 

ili = • bi~s  + bi (1.7) 
S 

where F = Ilfk/II,fla as in (1.2) and (1.3), and E is the identity matrix. Condition (1.6) is generally assumed 
in the dynamics of non-holonomic mechanical systems [1-9]. 

Equations (1.1) may be written in the following form [1-4] 

£ Usri{r = ~, (R i + Mi)bis (1.8) 
r i 

where Usr are the coefficients of the matrix u = [[Usr(q, t)][ 

Usr = a2U / 3i~s~)~ r (1.9) 

and U is the acceleration function; the function R i = Ri( q, it, t) is constructed from the expression for 
au/a< in (1.1) and the generalized forces Oi in (1.4) [1-4]. 

To analyse system (1.8), we introduce the following condition 

luik(q, t ) l ~ D ,  IR/(q, 3, t ) ~ D  . . . .  (1.10) 

It is assumed that this condition holds for all functions Uik(q, t), Ri( q, it, t) and fik(q, t), fi(q, t), bik(q, t), 
bi(q, t) and their derivatives, where the number D > 0 may be fairly large. Note that condition (1.10) 
requires the functions to be bounded only in principle and is not restrictive. This condition seems natural 
in the dynamics of mechanical systems [1-12]. It may be substantially weakened, requiring only that 
the functions be smooth [10-15]. 

The objective of the control of system (1.1)-(1.3) is given in the form 

~s =0 (1.11) 

or, taking (1.2) and (1.3) into consideration, in the form 

fki(q, t)ili+ fk(q, t )=O (1.12) 
i 

In other words, the objective of the control is to make the motion of the mechanical system take place 
along the given manifold (1.12) of its phase space (qi . . . . .  qm, 41, • • • qm) [10-15]. The idea is, through 
the choice of the functionsfsi(q, t),f,(q, t) in (1.12), to ensure satisfaction of meaningful control objectives 
in a mechanical system. 

In fact, Eqs (1.12) enable one to describe the control objectives in mechanical systems in the most 
general form [10]. Suppose, for example, that the control objective in a manipulator is to make its 
gripping device follow a prescribed path in space, with a given orientation. This objective may be 
described by the following relations [10] 
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g~q,t)=O, l = 1 , 2  . . . . .  6 (1.131) 

There are methods for constructing system (1.2) for which (1.13) is a stable manifold [16]. A control 
objective corresponding to steering the system to some final configuration may also be given the form 
(1.12). When that is done allowance may also be made for additional requirements, such as maintaining 
a certain velocity regime in the elements of the mechanical system. Restrictions on the motion of the 
system (phase restrictions), which arise when allowance is made for the positions and velocities of 
surrounding objects (obstacles), may also be represented in an analogous form [10-15]. 

The control problem for system (1.1)-(1.3) is to construct admissible controls Mi (that is, controls 
satisfying (1.5)) under which Eqs (1.12) describe a stable manifold of the system in accordance with 
the following definition. 

Definition 1. Equations (1.12) describe a stable manifold of system (1.1)-(1.3) if, for any e > 0, a 
5 = 5(e) > 0 exists such that the inequalities 

[~i fki(q, t)ili+fk(q, t)[ ~< t~, t ~  > t o (1.14) 

hold for t t> t o in any motion of system (1.1)-(1.3), provided that, at time t = t o 

I~i fki(q O, t°,il°i + fk,q O, t°,[<~ 5, Vq 0, O o (1.15) 

The problem is to construct a control law for system (1.1)-(1.3), in the form 

M i =Mi(ftj(q, t), Ok, ft(q, t)) (1.16) 

which does not involve the functions Usr(q, t), and Qi(q, q, t). The law must ensure that the motion of 
the system along a given manifold (1.12) is stable. It must be admissible, that is, it must satisfy_conditions 
(1.5). It must also be universal [10-15], that is, under  any substitution fsi ~ fsh fs --+ fs, the law 
(1.16) must ensure stabilization of the new manifold ZifkjOi + fk  = 0 instead of (1.12), provided only 
that the motion of the system along this manifold is feasible in practice (i.e. essentially, physically feasible) 
[11-15]. 

2. F E A S I B L E  M A N I F O L D S  OF A M E C H A N I C A L  S Y S T E M  

The control objective must conform to the dynamical possibilities of the controlled object (1.1)-(1.3). 
Namely, the motion of system (1.12) must also be a motion of the mechanical system under consideration, 
that is, system (1.1)-(1.3), (1.12) must be consistent. 

To formalize this condition, we will consider Eqs (1.12) as a system of m differential equations, 
describing the variation of the m generalized coordinates of the system qi(qi(t) is a solution of system 
(1.12)). We introduce the set • of all possible motions of this system [11-15]. "Ib fix our ideas, we will 
include in ~ all possible solutions q = q(t) of system (1.12) that begin at time t = t o with initial data 
q(t o) = qO from some admissible domain 

I q ° l ~  < d ,  d = c o n s t > 0  

Consider a motion (q, k) = (q, 0) of system (1.1)-(1.3), which corresponds to a motion q of system 
(1.12). The motions q(t) of system (1.12) are smooth (this follows from (1.10)). Henceforth, therefore, 
we will consider smooth motions (q, 0) of system (1.1)-(1.3) on the assumption that ~ = 0, when it 
takes the form 

~'. (Ri(q, O, t)+M°(t))bis(q, t)=O, M°(t)=Mi (2.1) 
i r~ 0 

Y. fki(q, tlili+ fk(q, t ) = 0  (2.2) 
i 

Equations (2.2) are identical with (1.12); Eqs (2.1) may be regarded as defining the generalized forces 
Mi = M ° of the mechanical system in unperturbed motion (q, 0) along the manifold (1.12). 
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Admissible controls of the mechanical system must be bounded, by (1.5). This means that in 
unperturbed motion of system (1.1)-(1.3) along system (1.12) (conforming to the control objective), 
Eqs (2.1) and (1.5) must hold, in the following form 

y. R°bls = -y~ M?bis , I M ° I<~ H i (2.3) 
i i 

o r  

(2.4) 

where the functions R °, bis depend on qi and t 

R ° = Ri( q, O, t) (2.5) 

Inequalities (2.4) we have constructed must be compatible with equations (1.12). In other words, the 
phase constraints (2.4) must be satisfied in all motions of system (1.12) 

q ~  

(2.6) 

When condition (2.6) is satisfied, system (1.1)-(1.3), (1.5), (1.12) is consistent. This means that a control 
in domain (1.5) exists, which forces the motion of the mechanical system (1.1)-(1.3) to take place along 
the given manifold (1.12). In what follows we shall say that such a manifold is feasible. If condition 
(2.6) is not satisfied, the system specified is not consistent, that is, motion of system (1.1)-(1.3), (1.5) 
along the manifold (1.12) need not be possible (the manifold (1.12) is not feasible). Henceforth, 
therefore, we will assume that conditions (2.6) are satisfied. 

3. S T A B I L I Z A T I O N  OF M A N I F O L D S  

To stabilize a manifold (1.12), we introduce discontinuous controls [10-15, 17] 

Mi = M~ = - H i s i g n ( ~  bis~s ) (3.1) 

with b/s as in (1.6). Taking note of (3.1) and (1.7), we rewrite subsystem (1.1) ((1.8)) in the form 

~, usr~ r = ~, (R i - H i sign(t)i - bi))bis (3.2) 
r i 

Theorem 1. Any manifold (1.12) is an exponentially stable manifold of system (3.2), (1.2), (1.3) (by 
analogy with Definition 1) if it is feasible in the sense that the following form of conditions (2.6) holds 

I R°i(q(t), t ) l q ~ .  <~ Hi -11 (3.3) 

where the constant 11 > 0 may be fairly small, and conditions (1.6) and (1.10) hold. 
The proof of Theorem 1 will be presented below in Section 4. 
The statement of Theorem 1 generalizes well-known results [10-15] in two main areas: (1) mechanical 

systems (1.1)-(1.3) of general form (containing non-holonomic constraints) are considered; (2) the 
control objective for the system is defined in the general form (1.12). 

Theorem 1 is essentially stating that control law (3.1) as constructed will ensure the stability of 
practically any feasiblemanifold of the non-holonomic system. The law is universal [10-15], since under 
the substitution fsj ~ f s j ,  f~ ~ f s  (that is, bi~ ~ b~, bi --* bi in (3.1)) it stabilizes the new given manifold 
ZjjT~j + y~ = 0 instead of (1.12). The only precondition is that this manifold be feasible, that is, condition 
(2.6) hold in the form (3.3). This is possible owing to the fact that the control law does not explicitly 
involve the functions u~r(q, t), ai(q,  tI, t), that is, it does not involve the dynamical parameters of the 
controlled object (mass, moments of inertia, friction coefficients, etc.). The dependence on these 
parameters is implicit, through the feasibility condition (2.6). 
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Note that condition (3.3) of  Theorem 1 is not substantially stronger than feasibility condition (2.6). 
In fact, if the matrix B = II bik II is diagonal and "q = 0, then these conditions are identical• The number 
11 in (3.4) may be chosen to be fairly small. 

We also note that inequalities (3.3), and hence also (2.6), are satisfied for sufficiently large Hi in (1.5). 
Indeed, let us introduce the notation 

h i = max I R°(q(t), t)I, h/= max I R°(q, t) l (3•4) 
qe~  q, t 

w h e r e / ~ i  < oo in (1.10). Inequalities (3.3) follow from the conditions 

h i <<- ~. <~ H i (3.5) 

4. A R I G O R O U S  P R O O F  OF THE S T A B I L I T Y  OF M A N I F O L D S  

Theorem 1 is proved using the scheme of [10015], which developed the direct method of Lyapunov 
functions as applied to mechanical systems. Namely, we introduce a function which will henceforth play 
the role of a Lyapunov function 

G = 1 2  u=~r'h;, (4.1) 
r ,S 

Let u= denote the coefficients of the matrix u = II u=(q, t) II introduced in (1 •9)• This function G satisfies 
the inequalities 

• 2 ( 4 . 2 )  ~'1~, ~, ~G(q,  i~, t)~<)~2 y. 52 $ 

where ~-i are numbers such that 0 < Z,1 ~ ~ < oo; these inequalities follow from (1.10) [1-4, 10o15]. 
In accordance with the basic positions of [10-15], the purpose of the controls is to make the function 

G decrease to zero, e.g. in accordance with the inequality 

t)(q, 5, t, M ) < 0  (4.3) 

which is Lyapunov's condition for stability of motion (G(q, k, t, M) is the derivative of G along the 
trajectories of the control object (3.2))• 

The derivative 

1 
d; = Y. 5,u=ii:,. + -~ Y. 1i,.,5,.5, (4.4) 

g,$ r ,S  

along trajectories of (3.2) has the form 

(4.5) 

Inequality (4.3) is obtained from expression (4.5) by majorizing the right-hand side, taking into account 
the properties of the mechanical system under consideration. 

To that end, we write (4.5) in fully developed form 

( F a.,, 
(7=~ ~s ~i (Ri+M;)b '̀+l~" 2 r I|~'-q---~lJJ oq) at J r) 

By (1.7), we can write (4.6) in the form 

(4.6) 

(4.7) 

where Asr and B#q are certain functions of qj and t. 
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Since G satisfies inequalities (4.2), we obtain the following inequality from (4.7) 

<~ Y. ~s y, (Ri + M] )bis + G(a + b~r-G) (4.8) 
s i 

where inequalities (1.10) have been taken into consideration and a and b are non-negative numbers. 
We will now show that the right-hand side of inequality (4.8) is negative-definite, that is, the desired 

inequality (4.3) will follow from (4.8). To do this, we use (2.5) and write inequality (4.8) in the form 

G<~ ~]~[R 0 + M] ]tfi + G('a + "b.vtG), ffi = ~'.bis~s (4.9) 
i s 

Taking (3.1) into account, we can write this inequality in the form 

C, <<- ?[  R ° - H i sign(ai)]ff i + G(g + bwt-G -) (4.10) 

o r  

(~<-?[-R ° sign(./)+ Hi ] la  i I+G(~ +~c~) (4.11) 

Note that the choice of the control in the form (3.1) satisfies the. general principle for constructing 
controls [10]. Indeed, the control M] of (3.1) gives the derivative G its minimum value in the domain 
of admissible controls (1.5) [5-7]. In other words, expression (4.5) for G may be written in the form 

d(q,t,f~,Mt)= min d(q,t,f~,M) (4.12) 
IMiI'~H i 

Taking condition (3.3) of Theorem 1 into consideration, we can rewrite inequality (4.11) in the form 

~< - 11 Y.I r~/I +O(E + ~ r ~ )  (4.13) 
i 

The sum in (4.13) satisfies the inequalities 

Y.I (~i I= 21 ~ . b i s ~  , I ~  'yl ~"J ~ s  I~> Y2 "¢~ (4.14) 
i i s s 

where Y1 = const > 0, i = 1, 2 , . . . .  Indeed, using (1.7), we can rewrite (1.2) in the form 

~s  = ~ fsi[(~i -- bi]-I- f s  = ~" f s i [ a i  ] (4.15) 
i i 

Hence it follows that 

El i~., I<. y. Y.I fsi II ~ I (4.16) 
s s i 

In view of condition (1.10) in Theorem 1, inequality (4.16) implies the first inequality in (4.14). The 
second follows directly from (4.2). Arguing from inequalities (4.13) and (4.14), we obtain inequality 
(4.3) in the form 

(4.17) 

We will now show explicitly that the solutions G = G(t) of inequality (4.17) tend exponentially to 
zero. This will imply, in view of (4.2), the analogous property for a motion r~s = 0 of system (3.2) under 
consideration, thus proving the main part of Theorem 1. 

The motion G = 0 of system (4.17) is stable. 

Indeed, in the domain 

- ~  + q-d(~ + ~q-d) ~ -  'A~ 

inequality (4.17) follows from the inequality 

(4.18) 

d~<- ~a/'G~ (4.19) 
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The solutions of this inequality are [10-15] 

G(t) ~ Gq°), for t°~ < t ~< t I , G(t) = 0, for t >t t 1 

n 

Relations (4.20) express the fact that the solution G = 0 of system (4.17) is stable. 

(4.20) 

(4.21) 

Now suppose that the motion of system (4.17) begins in domain (4.18). Then its motion will remain 
in that domain. In (4.18), the truth of (4.17) follows from inequality (4.19). This implies the truth of 
the stability relations (4.20) for system (4.17) also. In view of inequality (4.2), this implies that the solution 
/c s = 0 of system (4.3) is (exponentially) stable, which is the assertion of Theorem 1. The theorem is 
proved. 

5. S T A B I L I Z A T I O N  OF T H E  M O T I O N S  OF 
A N O N - H O L O N O M I C  S Y S T E M  

It follows from Theorem 1 that the quantities ks satisfy the following inequalities along motions of 
system (3.2) 

I/~ s I~ < ~/I/~s(t°) I exp(-~,(t - to)) (5.1) 

where y and ~, are non-negative constants and, by (4.20), for t/> t 1/> t °, ks = 0, and system (1.7) takes 
the form 

eli = bi(q,t) (5.2) 

We stipulate that system (5.2) has some exponentially stable motion q = q*(t). Then the following 
theorem holds. 

Theorem 2. Under  the assumptions of Theorem 1, suppose the motion q = q*(t) of system (5.2) is 
exponentially stable. Then (q*, 0) is an exponentially stable motion of system (3.2). 

The proof of Theorem 2 uses a Lyapunov function g(q, t), which exists due to the assumption that 
the motion q = q*(t) of system (5.2) is exponentially stable [18]. The derivative o fg  along trajectories 
of system (5.1) is 

= g! + ~,g' i (q , t ) t~i  (5.3) 
i 

where gl is the derivative of g along trajectories of unperturbed system (5.2). The right-hand side of 
(5.3) can be majorized, taking into account the fact thatg satisfies estimates characteristic for quadratic 
forms [18]. On the basis of these estimates, als0 using the fact that the perturbing term in (5.3) is a 
decreasing function, one establishes that g decreases along trajectories of system (1.7), that is its motion 
q* is stable, and hence so is the motion q* of system (3.2). 

It follows from Theorem 2 that system (3.2) will move along the given manifold (1.12) with its 
coordinates qi close to the give quantities q*i(t). The motion q*(t) may correspond, for example, to an 
equilibrium position of the mechanical system [5]. Thus, the stability of the equilibrium q*(t) follows 
from the assumption that the equilibrium q*(t) in system (5.2) is stable. 

A non-holonomic system need not have a unique equilibrium position, that is, there may be a manifold 
S(q) = 0 of equilibrium positions [4]. We stipulate that S(q) = 0 should be a stable manifold of system 
(5.2). In that case (with suitable additional assumptions) S(q) = 0 will be a stable manifold of system 
(3.2) also. 

Thus, the problem of stabilizing the motions of non-holonomic systems [5-9] may essentially be 
reduced to the question of whether one can construct a system (5.2) with a given stable motion q* (or 
manifold S(q) = 0) by a suitable choice of the functionsf~i(q, r),f~(q, t) in the initial relations (1.2). This 
question relates to the problem of constructing differential equations with given asymptotically stable 
integral manifolds [16]. 
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6. STABILITY TO PERSISTENT PERTURBATIONS 

The motion of a non-holonomic system will also be stable when allowance is made for various non- 
ideal features of the measuring and actuating elements of the control system [14, 15]. If the measurement 
errors ~- in the generalized velocities qi are  taken into account system (3.2) becomes 

~a Usr~r ~- Y~ ( R i - H i s ign(q i  + ~i - bi ) )bis (6 .1)  
r i 

Suppose the errors are small 

I~i I~ ~ (6.2) 

where ~ = const > 0 is a small quantity. Then it may be shown that Theorem 1 remains valid-- 
but with exponential stability_replaced by ordinary stability (in Lyapunov's sense) in accordance with 
Definition 1, where ;5 = 8(e, 0 --) 0 as e, ~ -~ 0. 

The same will be true when allowance is made for other non-ideal features of the control system. 
For example, if there is a small delay x in the system measuring (estimating, observing) the state of the 
object, the controls Mi in (6.1) will have the form 

Mi(t  ) = - H  i sign[~/i (t - x) - bi(q(t - x), t)] (6.3) 

or, with a small time lag in the system drives 

?Mi + Mi = Hi sign[t~i- bi] (6.4) 

where 7 > 0 is a sufficiently small number, etc. [14, 15]. 
When allowanceiis made for non-ideal features of the measuring and actuating elements of the control 

system, in the general case, the forces Mi may be written in the form 

Mi = - H i  sign(X/) + Z i ( ~ i ) ,  ~i  = qi - bi (6.5) 

The quantities Z i express the deviations of the non-ideal law (6.5) from the ideal one (3.1). Conditions 
stipulating that the effect of these non-ideal features of the measuring and actuating elements of the 
control system should be weak may be written for the general case in the form 

N~A,  A=const>0, N = ~ , Z i z  i (6.6) 
i 

The quantity N may be regarded as the total power of the forces Zi perturbing the ideal control law 
(3.1) [14, 15]. Taking (6.5) into consideration, system (3.2) can be written in the form 

usr~ r = Y, ( R i - H i sign(~i ) + Z i (~i ) )bis (6.7) 
r i 

Theorem 3. Under the assumptions of Theorem 1, suppose that the perturbing forces Zi in (6.7) are 
small (the number A in (6.6) is small). Then any manifold (1.12) is a stable manifold of system (6.7). 

The proof of Theorem 3 follows that of Theorem 1 and the well-known scheme of [10-15], except 
that instead of (4.17) we have the inequalities 

~ _ ~ ¢ r ~  + G(~ + "~l-~) + Z i~,. ~, Zibt~ (6.8) 
s i 

<< _ ~ t - ~  + G(K + ~ t-~) + E Zi~i (6.9) 
i 

~< _ ~ r ~  + G(~ + G~fG) + A (6.10) 

The solutions of inequalities (6.10) have the form 

G ( t ) ~ G ( t ° ) ,  t>-t ° (6.11) 

if the numbers G(t  °) and A in (6.10) and (6.11) are sufficiently small. This implies the truth of Theorem 3. 
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7. A L L O W A N C E  FOR THE D R I V E  DYNAMICS 

Even when the dynamics of the drives of the system are significant (the numbers 7( in (6.4) or A in 
(6.6) are not small), the manifold (1.12) of non-holonomic system (1.1)-(1.3) may still be stabilized. 
Let us consider the dynamics of the drives in the following form [11] 

where Ui are new controls. 
Differentiate Eqs (1.8) 

1(4 i = Fi(M,q, gl, t)+Ui, IU i I<.Hi (7.1) 

~,u.,r~ r = ~,(pi(q,i~,~,t)+ Mi)bis (7.2) 
r i 

and eliminate the quantities M/using (7.1) and Mi using (1.8). The resulting system 

~.,Usr'~r = ~,(Pii  + Ui)b is  ( 7 . 3 )  
r i 

is equivalent to system (1.8), (7.1) [11]. 
We now introduce the set of unperturbed motions (q, 9, ~, t) = (q, 0, 0, t) of system (1.2), (1.3), (7.3) 

according to conditions (2.1)-(2.6) in the form 

~,(Pi ° + U°i )bis = 0 (7.4) 
i 

Z P?b  = Z U°bis, I u ° Hi 
i i 

(7.5) 

[~i Pi°bisl<" ~i Hi Ibis I (7.6) 

~Pi°(q,O,O,t)bt~(q,t)l-Y.i Hilbis(q,t)l~O, qE~ 

We define controls by analogy with (3.1) 

Ui = - H  i sign[~bi.,(~s + ~,~.~)] 

where the number 7( = const > 0 is sufficiently small. Then system (7.3) becomes 

(7.7) 

(7.8) 

(7.9) 

Theorem 4. Any manifold (1.12) is an exponentially stable manifold of system (1.2), (1.3), (7.9) (the 
definition is analogous to Definition 1) if manifold (1.12) is feasible in the sense that conditions (7.7) 
hold in the form 

(7.10) 

where the constant 1] > 0 may be fairly small and conditions (1.6) and (1.10) are satisfied. 
The proof of Theorem 4 proceeds along the lines of Section 4 and will not be given here. 
Theorems 1-4 indicate that the main assertion of this paper, as to the possibility of stabilizing manifolds 

for non-holonomic mechanical systems of general form, is of a non-local nature. 
This research was supported financially by the Russian Foundation for Basic Research (97-01-00039). 



694 V.I. Matyukhin 

R E F E R E N C E S  

1. APPELL, P., Trait~ de M~canique Rationelle, Vols 1 and 2. Gauthier-Villars, Paris, 1960. 
2. GANTMAKHER, E R., Lectures on Analytical Mechanics. Fizmatgiz, Moscow, 1960. 
3. LUR'YE, A. I., Analytical Mechanics. Fizmatgiz, Moscow, 1961. 
4. NEIMARK, Yu. I. and FUFAYEV, N. A., Dynamics of Non-holonomic Systems. Nauka, Moscow, 1967. 
5. KARAPETYAN, A. V. and RUMYANTSEV, V. V., Stability of Conservative and Dissipative Systems. Advances in Science and 

Technology. Ser. General Mechanics, Vol. 6. Vsesoyz. Inst. Nauch i Tekh. Inform., Moscow, 1983. 
6. KOZLOV, V. V., The stability of the equilibria of non-holonomic systems. Dokl. Akad. Nauk SSSR, 1986, 288, 2, 289-291. 
7. TATARINOV, Ya. V., Consequences of non-integrable perturbation of integrable constraints: Non-linear effects of motion 

near a manifold of equilibria. Prikl. Mat. Mekh., 1992, 56, 4, 604-614. 
8. TERTYCHNYI, V. Yu., Integral estimation and adaptive stabilization of controlled non-holonomic systems. PriM. Mat. Mekh., 

1992, 56, 6, 976-984. 
9. BLOCH, A. M., REYHANOGLU, M. and McCLAMROCH, N. H., Control and stabilization of nonholonomic dynamic 

system. IEEE Trans. Automat. Control, 1992, 37, 11, 1746-1757. 
10. PYATNITSKII, Ye. S., Synthesis of hierarchical systems for controlling mechanical and electro-mechanical objects based 

on the decomposition principle, I, II. Avtomatika i Telemekhanika, 1989, 1, 87-99; 2, 57-71. 
11. MATYUKHIN, V. I. and PYATNITSKII, Ye. S., Control of the motion of manipulator robots based on the decomposition 

principle taking the dynamics of the drives into account. Avtokmatika i Telemekhanika, 1989, 9, 67-81. 
12. MATYUKHIN, V. I., The stability of the motions of manipulator robots in a decomposition regime. Avtomatika i 

Telemekhanika, 1989, 3, 33-44. 
13. MATYUKHIN, V. I., The strong stability of the motions of mechanical systems. A vtomatika i Telemekhanika, 1996, 1, 37-56. 
14. MATYUKHIN, V. I., The stability of the motions of a manipulator under constantly acting perturbations. Avtomatika i 

Telemekhanika, 1993, 11, 124--134. 
15. MATYUKHIN, V. I., The stability of the motions of a manipulator taking the weak dynamics of the control devices into 

account. Avtomatika i Telemekhanika, 1996, 11,124-134. 
16. GALIULLIN, A. S., MUKHAMETZYANOV, I. A., MUKHARLYAMOV, R. G. and FURASOV, V. D., Construction of 

Systems of Programmed Motion. Nauka, Moscow, 1971. 
17. FILIPPOV, A. E, Differential Equations with Discontinuous Right-hand Side. Nauka, Moscow, 1985. 
18. KRASOVSKII, N. N., Some Problems in the Theory of Stability of Motion. Fizmatgiz, Moscow, 1959. 

Translated by D.L. 


